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Abstract 
We present two hybrid algorithms for image reconstruction based on 
Particle Swarm Optimization (PSO) and Kaczmarz�s algorithm. We 
compared these hybrids with Kaczmarz�s original algorithm, pure PSO 
and Genetic Algorithms. We found that both our hybrid algorithms offer 
good solutions and one of them offers a nearly perfect solution. The 
article is structured in six sections. The first section contains a short 
description of the problem we tackle. Sections two, three and four 
describe the algorithms we compared. Section five contains results of our 
comparison, and section six contains ideas about future work. 
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1. IMAGE RECONSTRUCTION 
The problem we tackle comes from the field of Computerized Tomography (CT), 

and has large applicability in various fields like medicine, transportation, geology, or 
remote vision. Consider a planar cross-section of a body that is being scanned with some 
type of ray (or beam). For exemple, X-rays or infrared beams are used in medicine 
imaging, while electromagnetic beams are used in electromagnetic geotomography. The 
body�s attenuation of rays in every point of the cross-section has to be reconstructed. We'll 
call image (or picture) this unknown function of two variables with real nonnegative 
values. 

The fundamental model in the finite series-expansion approach may be formulated 
as follows: a cartesian grid of square picture elements, called pixels, is introduced into the 
region of interest so that it covers the whole picture that has to be reconstructed. The pixels 
are numbered from left to right and top to bottom, from 1 to n (see 1.1). We assume that 
the ray attenuation takes a constant uniform value xj throughout the jth

 pixel, for 
j=1,2,�,n. We also consider that each ray is a straight line between a source and a 
detector. Ray sources are located on the left hand side of the cross-section, and ray 
detectors are on the right hand side. Each source-detector pair denoteds a ray. Let m be the 
number of rays. 

 

Figure 1.1 CT Discretization 

For any i=1,2,�,m and j=1,2,�,n, we denote by aij the length of the segment 
defined by the intersection of the ith ray with the jth pixel. We assume that aij represents the 
weight of the contribution of the jth pixel to the total attenuation along the ith ray. The 
physical measurement of the total attenuation along the ith ray, denoted by bi, is the line 
integral of the unknown attenuation function along the the ray. Therefore, for in this 
discretized model, each line integral is a finite sum and we get the system of linear 
equations that describes the model 
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which we can rewrite in matrix form as 
bAx                                                                                                                    (1.2) 
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called projection matrix, x is the image vector, and b is the measurements vector. 
Frequently, due to measurement errors, the measurements are subject to perturbations, so b 
does not belong to )( AR 1. We can reconsider the problem (1.2) as a liniar least squares 

problem: find nx R  such as  
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So, one needs to find nRx *  such that: 

 nRxbAxbAx  ,min*                                                                             (1.4) 

We denote by  bALSS ,  the set of all liniar least squares solutions of the equation (1.4). 

It is well known (see [1]) that  bALSS ,  contains a unique element of minimal norm 

denoted by LSx . 

 
2. KACZMARZ'S ALGORITHM 

We will briefly describe Kaczmarz's algorithm (KA) introduced in [3]. Let 0ia  

be the ith row of the matrix A , and ib  the ith component of the vector b , for mi ,...,2,1 . 

Let ),( bfi , nn RRbF  :),( be the applications defined by 
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KA may be stated as follows: let nRx 0  (arbitrary) and nk Rx   an approximation. The 
next approximation is computed by 

 kk xbFx ,1  , 0k                                                                                            (2.3) 

Kaczmarz proved in [3] that LS
k

k
xx 


lim  for square nonsingular systems as in 

(1.2), and Tanabe proved in [7] that KA can be used for arbitrary least-squares problems 
of the form (1.3). However, LSx  is obtained as a limit point with Tanabe�s method if and 

only if  TARx 0 . 

Extensions of KA and other algorithms have been proposed in [2], [4], [5], and 
[6], but all these algorithms have the same weak point: they obtain an approximation of the 
solution using another approximation. Thus, accumulation of approximations (i.e. errors) 
appear. Moreover, due to the lack of information, the usual initial approximation is a blank 

image ( 00 x ). 
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3. EVOLUTIONARY ALGORITHMS 
In general, an evolutionary algorithm is a stochastic, directed search algorithm 

based on principles of evolution theory applied to computer systems. The algorithm 
maintains a set of possible solutions and evolves them in a controlled randomly fashion in 
order to obtain a solution for a problem. Due to their evolutionary nature, there is no need 
for specific information, or superior theoretical knowledge about the optimization problem 
at hand. 

The evolutionary process of the solutions is based on evolutionary operators. In 
order for evolution to occur, solutions must pass the sieve of selection. Each solution is 
assigned a measure of its performance in solving the problem objective, called fitness; the 
process is called evaluation. Then, solutions are selected according to their fitness. The 
selection process simulates the �survival of the fittest� paradigm from nature. The better 
fitted the solution, the higher the probability of leaving more offspring in the next 
generation of solutions. 

We used evolutionary algorithms to improve results of KA image reconstruction 
problems. The fitness function, common to all the algorithms, is based on the problem 
objective function, thus trying to minimize the absolute errors between the computed and 
the measured results. We defined the fitness function as 
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where x  is a vector of nm  values from  1,0  that represents the current image. 

 
3.1 GENETIC ALGORITHM 

The first evolutionary algorithm we used is a genetic algorithm (GA). In this 
context, a solution is called chromosome, and encodes an image as a vector of n double 
precision floating point numbers between 0 and 1, which are called genes. Actually, the 
value of the ith gene represents the absorption of the ith pixel in the image, and decodes into 
the colour of that pixel. 

On each iteration of the algorithm there is a fixed size population of pop_size 
chromosomes. The population evolves by means of three genetic operators: mutation, 
crossover and selection. For a chromosome, the mutation operator modifies each gene with 
mut_rate probability by changing the value of a randomly selected gene. The crossover 
operator works on a pair of chromosomes by swapping substrings of genes. Each 
chromosome is selected for crossover with cross_rate probability, and a random crossover 
point is selected. Genes preceding that point are swapped between chromosomes, and the 
resulting chromosomes are called offspring. The selection operator is implemented with 
Monte Carlo selection scheme. The probability that a chromosome will survive in the next 
generation is proportionate to its fitness. The better fitted the chromosomes, the higher the 
probability of leaving more offspring in the next generation. 
 



 

 

3.2 PARTICLE SWARM OPTIMIZATION 
The second evolutionary algorithm we used is an n-dimensional extension of the 

PSO algorithm described in [8]. In this context, a solution is called particle, and encodes 
an image as a vector of tuples of double precision floating-point numbers between 0 and 1. 
The values in the ith tuple represent the current position in the search space, the velocity 
and the best so far position of the particle in its ith dimension. The position component in 
the ith tuple represents the absorption value of the ith pixel in the image, and decodes into 
the colour of that pixel. Each particle has a fixed set of neighbours which influence its 
search strategy (we considered only one neighbour in our implementation). 

On each iteration of the algorithm we have a fixed-size set of part_count particles. 
Each particle �moves� through the search space based on its history (best so far position) 
and its neighbours. On each iteration, velocity and position components of particles are 
updated using the following formulas 
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where, for iteration t and particle i, vi
t denotes the speed, bi

t denotes the best so far 
position, pi

t is the current position and ni
t � the neighbour�s position. The parameters of the 

algorithm (inertia, cognitive, social, and vmax) control the bias between exploration and the 
exploitation in the search space. The best so far position is updated if a better position is 
located. 
 
4. HYBRID ALGORITHMS 

In this section, we describe the hybrid algorithms based on Kaczmarz's algorithm 
and particle swarm optimisation. The classical genetic algorithm performed quite badly 
compared to the PSO approach and Kaczmarz algorithm; hybridisation of GA with KA 
will be subject of further work. 

First hybrid algorithm (FHA) has two distinct stages. During the first stage, we 
run the PSO algorithm described earlier. In the second stage, the algorithm uses the best 
solution from the first stage as the initial approximation of the solution in Kaczmarz's 
algorithm. The solution of the algorithm is the solution reached by KA in the second stage. 
Second hybrid algorithm (SHA) runs KA and PSO algorithms in parallel. For each particle 
SHA alternates between PSO and KA iterations, doing one iteration of each of them. The 
solution of the algorithm is chosen from the set of best solutions reached by PSO. 
 
EXPERIMENTS 

We present our results for four image reconstruction experiments. The first three 
images are artificial test images. The last image is a scanned photo of a baby, which was 
preprocessed through a resample, a grayscale and a negative filter. Images and their 
properties (left to right) are presented below: 



 

 

Figure 5.1 Test images (original source) 
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Table 5.1 Image colormap 
Image Size Source Unique colors 
Test 1 8x8 Drawing 9 
Test 2 12x12 Drawing 8 
Test 3 16x16 Drawing 11 
Test 4 20x20 Scanned photo 71 

Table 5.2 Test images properties 
For each image, we ran all five algorithms with various settings, but we present 

results only on 10th and 100th iteration for the following settings: 
 KA: no settings required; 
 GA: pop_size=60, mut_rate=5%, and cross_rate=70%; 
 PSO: part_count=60, vmax=1.1, inertia=0.35, cognitive=1.2, and social=1.2; 
 FHA: part_count=60, vmax=1.1, inertia=0.35, cognitive=1.2, and social=1.2; 
 SHA: part_count=60, vmax=1.1, inertia=0.35, cognitive=1.2, and social=1.2. 
 

1.1 RESULTS AFTER 10 ITERATIONS 
After 10 iterations, both classic GA and PSO failed to obtain a �good� 

reconstruction even for the simple Test 1 image. While the GA�s image is useless, the 
PSO�s image began to shape up. This is however a normal behaviour since 10 iterations 
are not enough to allow these evolutionary algorithms to establish a good search direction. 

Figure 5.2 GA results after 10 iterations 

Figure 5.3 PSO results after 10 iterations 
As it was expected, KA found some shapes, but images are still affected by noise, 

which is common in Kaczmarz image reconstructions. Also, in all the tests we noticed that 
KA has trouble reconstructing shapes near the edges of the images. We consider this to be 
normal behaviour, since these are the areas that are the least scanned by rays.  



 

 

Figure 5.4 KA results after 10 iterations 
Powered by KA, FHA found some shapes, too. However, the shapes were actually 

found in the KA stage. Moreover, because of the �bad� starting approximation generated 
with PSO during the first stage of FHA, reconstructed images are not as good as those of 
KA. 

Figure 5.5 FHA results after 10 iterations 
Results of SHA are surprisingly good. Test 1 image is almost perfect and other 

images have very well defined shapes. It seems that KA drives the reconstruction process 
towards the �good� image, while PSO helps eliminating the noise, thus filtering the image. 

Figure 5.6 SHA results after 10 iterations 
 

RESULTS AFTER 100 ITERATIONS 
After 100 iterations, GA still has no good image. It is clear that this simple 

approach (using the chromosome encoding described in section 3.1) does not work for 
these general images. However, maybe a different encoding or modified, problem specific, 
operators may lead to better results. We will try to further investigate this aspect. 

Figure 5.7 GA results after 100 iterations 
PSO has improved its Test 1 and Test 2 results, but results are not very 

satisfactory and it still has no acceptable solution for Test 3 and Test 4 images. 

Figure 5.8 PSO results after 100 iterations 
As we expected, KA has improved very little its results for Test 1 and Test 2, too, 

but the noise accumulated during computations is making further improvements difficult. 
For Test 3 and Test 4 KA has no satisfactory results, probably for the same reasons. 



 

 

Basiclly, KA reached a dead-end where the solution image improves very little or none at 
all. 

Figure 5.9 KA results after 100 iterations 
FHA performed much better than PSO, and a little better than simple KA. All 

reconstructed images are affected by the noise from the KA in the second stage of the 
algorithm. Moreover, final results are almost independent of the settings of PSO or its 
solutions (which become KA's starting approximation). 

Figure 5.10 FHA results after 100 iterations 
After 100 iterations, SHA has almost perfect solutions for Test 1 and Test 2. 

These images have almost invisible differences when compared to original images. Also, 
SHA found very good solutions for Test 3 and Test 4. All its solutions are much better 
than those offered by KA alone, or the other evolutionary algorithms we presented in this 
article. 

Figure 5.11 SHA results after 100 iterations 
 

OVERAL PERFORMANCE 
The following charts show the evolution during 100 iterations of the residual norm 

for KA, and the mean residual norm for PSO, FHA and SHA over 25 runs. We did not 
include on these charts the GA's mean residual norm as they were of no interest (the mean 
residual norm in the GA over 25 runs of the algorithm was almost constant). 
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Figure 5.12 Test 1 - Residual norm over 100 iterations 
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Figure 5.13 Test 2 - Residual norm over 100 iterations 
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Figure 5.15 Test 4 - Residual norm over 100 iterations 

 

CONCLUSIONS AND FUTURE WORK 
Particle Swarm Optimisation is a powerful technique which can be used 

successfully to improve results of classical algorithms for image reconstruction. SHA 
outperforms particle swarm optimisation and Kaczmarz algorithm by far, providing results 
that are very close to the original images. 

One future direction is the study of the influence that PSO parameters have on the 
quality of the solution of SHA. More tests need to be done on real-world data and we will 
try to develop other fitness functions that are more suitable for our problem, too. We will 
also test other hybridisations of numerical and evolutionary algorithms for image 
reconstruction. 
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