

IMPROVING IMAGE RECONSTRUCTION
WITH EVOLUTIONARY ALGORITHMS*

ANDREI BÃUTU
Naval Academy �Mircea cel Batran�, Constanta, Romania

ELENA BÃUTU
CONSTANTIN POPA
Faculty of Mathematics and Informatics, �Ovidius� University, Constanþa, Romania

HENRI LUCHIAN
Faculty of Computer Science, �Al. I. Cuza� University, Iaºi, Romania

Abstract
We present two hybrid algorithms for image reconstruction based on
Particle Swarm Optimization (PSO) and Kaczmarz�s algorithm. We
compared these hybrids with Kaczmarz�s original algorithm, pure PSO
and Genetic Algorithms. We found that both our hybrid algorithms offer
good solutions and one of them offers a nearly perfect solution. The
article is structured in six sections. The first section contains a short
description of the problem we tackle. Sections two, three and four
describe the algorithms we compared. Section five contains results of our
comparison, and section six contains ideas about future work.

Keywords: image reconstruction, genetic algorithm, particle swarm
optimization

* This research was supported by the PNCDI INFOSOC Grant 131/2004

The 7th Balkan Conference on Operational
Research

�BACOR 05�
Constanta, May 2005, Romania

1. IMAGE RECONSTRUCTION
The problem we tackle comes from the field of Computerized Tomography (CT),

and has large applicability in various fields like medicine, transportation, geology, or
remote vision. Consider a planar cross-section of a body that is being scanned with some
type of ray (or beam). For exemple, X-rays or infrared beams are used in medicine
imaging, while electromagnetic beams are used in electromagnetic geotomography. The
body�s attenuation of rays in every point of the cross-section has to be reconstructed. We'll
call image (or picture) this unknown function of two variables with real nonnegative
values.

The fundamental model in the finite series-expansion approach may be formulated
as follows: a cartesian grid of square picture elements, called pixels, is introduced into the
region of interest so that it covers the whole picture that has to be reconstructed. The pixels
are numbered from left to right and top to bottom, from 1 to n (see 1.1). We assume that
the ray attenuation takes a constant uniform value xj throughout the jth

 pixel, for
j=1,2,�,n. We also consider that each ray is a straight line between a source and a
detector. Ray sources are located on the left hand side of the cross-section, and ray
detectors are on the right hand side. Each source-detector pair denoteds a ray. Let m be the
number of rays.

Figure 1.1 CT Discretization

For any i=1,2,�,m and j=1,2,�,n, we denote by aij the length of the segment
defined by the intersection of the ith ray with the jth pixel. We assume that aij represents the
weight of the contribution of the jth pixel to the total attenuation along the ith ray. The
physical measurement of the total attenuation along the ith ray, denoted by bi, is the line
integral of the unknown attenuation function along the the ray. Therefore, for in this
discretized model, each line integral is a finite sum and we get the system of linear
equations that describes the model





n

j
ijij bxa

1

, mi ,...,2,1 , (1.1)

which we can rewrite in matrix form as
bAx  (1.2)

1

n

Sources Detectors

jth pixel

ith ray

aij

where)(ijaA  is an nm matrix, T
nxxx),...,(1 , and T

mbbb),...,(1 . Here, A is

called projection matrix, x is the image vector, and b is the measurements vector.
Frequently, due to measurement errors, the measurements are subject to perturbations, so b
does not belong to)(AR 1. We can reconsider the problem (1.2) as a liniar least squares

problem: find nx R such as

min!
2  bAx

 (1.3)

So, one needs to find nRx * such that:

 nRxbAxbAx  ,min* (1.4)

We denote by  bALSS , the set of all liniar least squares solutions of the equation (1.4).

It is well known (see [1]) that  bALSS , contains a unique element of minimal norm

denoted by LSx .

2. KACZMARZ'S ALGORITHM

We will briefly describe Kaczmarz's algorithm (KA) introduced in [3]. Let 0ia

be the ith row of the matrix A , and ib the ith component of the vector b , for mi ,...,2,1 .

Let),(bfi , nn RRbF  :),(be the applications defined by

  i

i

ii
i a

a

bax
xxbf

2

,
,


 (2.1)

  xbffxbF m ,),(1  (2.2)

KA may be stated as follows: let nRx 0 (arbitrary) and nk Rx  an approximation. The
next approximation is computed by

 kk xbFx ,1  , 0k (2.3)

Kaczmarz proved in [3] that LS
k

k
xx 


lim for square nonsingular systems as in

(1.2), and Tanabe proved in [7] that KA can be used for arbitrary least-squares problems
of the form (1.3). However, LSx is obtained as a limit point with Tanabe�s method if and

only if  TARx 0 .

Extensions of KA and other algorithms have been proposed in [2], [4], [5], and
[6], but all these algorithms have the same weak point: they obtain an approximation of the
solution using another approximation. Thus, accumulation of approximations (i.e. errors)
appear. Moreover, due to the lack of information, the usual initial approximation is a blank

image (00 x).

1 R(A) is the range of matrix A

3. EVOLUTIONARY ALGORITHMS
In general, an evolutionary algorithm is a stochastic, directed search algorithm

based on principles of evolution theory applied to computer systems. The algorithm
maintains a set of possible solutions and evolves them in a controlled randomly fashion in
order to obtain a solution for a problem. Due to their evolutionary nature, there is no need
for specific information, or superior theoretical knowledge about the optimization problem
at hand.

The evolutionary process of the solutions is based on evolutionary operators. In
order for evolution to occur, solutions must pass the sieve of selection. Each solution is
assigned a measure of its performance in solving the problem objective, called fitness; the
process is called evaluation. Then, solutions are selected according to their fitness. The
selection process simulates the �survival of the fittest� paradigm from nature. The better
fitted the solution, the higher the probability of leaving more offspring in the next
generation of solutions.

We used evolutionary algorithms to improve results of KA image reconstruction
problems. The fitness function, common to all the algorithms, is based on the problem
objective function, thus trying to minimize the absolute errors between the computed and
the measured results. We defined the fitness function as

    12
1


 bAxxfitness (2.4)

where x is a vector of nm values from  1,0 that represents the current image.

3.1 GENETIC ALGORITHM

The first evolutionary algorithm we used is a genetic algorithm (GA). In this
context, a solution is called chromosome, and encodes an image as a vector of n double
precision floating point numbers between 0 and 1, which are called genes. Actually, the
value of the ith gene represents the absorption of the ith pixel in the image, and decodes into
the colour of that pixel.

On each iteration of the algorithm there is a fixed size population of pop_size
chromosomes. The population evolves by means of three genetic operators: mutation,
crossover and selection. For a chromosome, the mutation operator modifies each gene with
mut_rate probability by changing the value of a randomly selected gene. The crossover
operator works on a pair of chromosomes by swapping substrings of genes. Each
chromosome is selected for crossover with cross_rate probability, and a random crossover
point is selected. Genes preceding that point are swapped between chromosomes, and the
resulting chromosomes are called offspring. The selection operator is implemented with
Monte Carlo selection scheme. The probability that a chromosome will survive in the next
generation is proportionate to its fitness. The better fitted the chromosomes, the higher the
probability of leaving more offspring in the next generation.

3.2 PARTICLE SWARM OPTIMIZATION
The second evolutionary algorithm we used is an n-dimensional extension of the

PSO algorithm described in [8]. In this context, a solution is called particle, and encodes
an image as a vector of tuples of double precision floating-point numbers between 0 and 1.
The values in the ith tuple represent the current position in the search space, the velocity
and the best so far position of the particle in its ith dimension. The position component in
the ith tuple represents the absorption value of the ith pixel in the image, and decodes into
the colour of that pixel. Each particle has a fixed set of neighbours which influence its
search strategy (we considered only one neighbour in our implementation).

On each iteration of the algorithm we have a fixed-size set of part_count particles.
Each particle �moves� through the search space based on its history (best so far position)
and its neighbours. On each iteration, velocity and position components of particles are
updated using the following formulas

))',max(,min(

)(())(()'

1maxmax1

1

i
t

i
t

i
t

i
t

i
t

i
t

i
t

i
t

vvvv

pnsocialrandpbcognitiverandinertiavv








 (2.5)

))',0max(,1min(

'

11

11

i
t

i
t

i
t

i
t

i
t

pp

vpp








 (2.6)

where, for iteration t and particle i, vi
t denotes the speed, bi

t denotes the best so far
position, pi

t is the current position and ni
t � the neighbour�s position. The parameters of the

algorithm (inertia, cognitive, social, and vmax) control the bias between exploration and the
exploitation in the search space. The best so far position is updated if a better position is
located.

4. HYBRID ALGORITHMS

In this section, we describe the hybrid algorithms based on Kaczmarz's algorithm
and particle swarm optimisation. The classical genetic algorithm performed quite badly
compared to the PSO approach and Kaczmarz algorithm; hybridisation of GA with KA
will be subject of further work.

First hybrid algorithm (FHA) has two distinct stages. During the first stage, we
run the PSO algorithm described earlier. In the second stage, the algorithm uses the best
solution from the first stage as the initial approximation of the solution in Kaczmarz's
algorithm. The solution of the algorithm is the solution reached by KA in the second stage.
Second hybrid algorithm (SHA) runs KA and PSO algorithms in parallel. For each particle
SHA alternates between PSO and KA iterations, doing one iteration of each of them. The
solution of the algorithm is chosen from the set of best solutions reached by PSO.

EXPERIMENTS

We present our results for four image reconstruction experiments. The first three
images are artificial test images. The last image is a scanned photo of a baby, which was
preprocessed through a resample, a grayscale and a negative filter. Images and their
properties (left to right) are presented below:

Figure 5.1 Test images (original source)

0 0.25 0.5 0.75 1

Table 5.1 Image colormap
Image Size Source Unique colors
Test 1 8x8 Drawing 9
Test 2 12x12 Drawing 8
Test 3 16x16 Drawing 11
Test 4 20x20 Scanned photo 71

Table 5.2 Test images properties
For each image, we ran all five algorithms with various settings, but we present

results only on 10th and 100th iteration for the following settings:
 KA: no settings required;
 GA: pop_size=60, mut_rate=5%, and cross_rate=70%;
 PSO: part_count=60, vmax=1.1, inertia=0.35, cognitive=1.2, and social=1.2;
 FHA: part_count=60, vmax=1.1, inertia=0.35, cognitive=1.2, and social=1.2;
 SHA: part_count=60, vmax=1.1, inertia=0.35, cognitive=1.2, and social=1.2.

1.1 RESULTS AFTER 10 ITERATIONS
After 10 iterations, both classic GA and PSO failed to obtain a �good�

reconstruction even for the simple Test 1 image. While the GA�s image is useless, the
PSO�s image began to shape up. This is however a normal behaviour since 10 iterations
are not enough to allow these evolutionary algorithms to establish a good search direction.

Figure 5.2 GA results after 10 iterations

Figure 5.3 PSO results after 10 iterations
As it was expected, KA found some shapes, but images are still affected by noise,

which is common in Kaczmarz image reconstructions. Also, in all the tests we noticed that
KA has trouble reconstructing shapes near the edges of the images. We consider this to be
normal behaviour, since these are the areas that are the least scanned by rays.

Figure 5.4 KA results after 10 iterations
Powered by KA, FHA found some shapes, too. However, the shapes were actually

found in the KA stage. Moreover, because of the �bad� starting approximation generated
with PSO during the first stage of FHA, reconstructed images are not as good as those of
KA.

Figure 5.5 FHA results after 10 iterations
Results of SHA are surprisingly good. Test 1 image is almost perfect and other

images have very well defined shapes. It seems that KA drives the reconstruction process
towards the �good� image, while PSO helps eliminating the noise, thus filtering the image.

Figure 5.6 SHA results after 10 iterations

RESULTS AFTER 100 ITERATIONS
After 100 iterations, GA still has no good image. It is clear that this simple

approach (using the chromosome encoding described in section 3.1) does not work for
these general images. However, maybe a different encoding or modified, problem specific,
operators may lead to better results. We will try to further investigate this aspect.

Figure 5.7 GA results after 100 iterations
PSO has improved its Test 1 and Test 2 results, but results are not very

satisfactory and it still has no acceptable solution for Test 3 and Test 4 images.

Figure 5.8 PSO results after 100 iterations
As we expected, KA has improved very little its results for Test 1 and Test 2, too,

but the noise accumulated during computations is making further improvements difficult.
For Test 3 and Test 4 KA has no satisfactory results, probably for the same reasons.

Basiclly, KA reached a dead-end where the solution image improves very little or none at
all.

Figure 5.9 KA results after 100 iterations
FHA performed much better than PSO, and a little better than simple KA. All

reconstructed images are affected by the noise from the KA in the second stage of the
algorithm. Moreover, final results are almost independent of the settings of PSO or its
solutions (which become KA's starting approximation).

Figure 5.10 FHA results after 100 iterations
After 100 iterations, SHA has almost perfect solutions for Test 1 and Test 2.

These images have almost invisible differences when compared to original images. Also,
SHA found very good solutions for Test 3 and Test 4. All its solutions are much better
than those offered by KA alone, or the other evolutionary algorithms we presented in this
article.

Figure 5.11 SHA results after 100 iterations

OVERAL PERFORMANCE
The following charts show the evolution during 100 iterations of the residual norm

for KA, and the mean residual norm for PSO, FHA and SHA over 25 runs. We did not
include on these charts the GA's mean residual norm as they were of no interest (the mean
residual norm in the GA over 25 runs of the algorithm was almost constant).

0

0,2

0,4

0,6

0,8

1

1,2

1 10 19 28 37 46 55 64 73 82 91 100

KA PSO FHA SHA
Figure 5.12 Test 1 - Residual norm over 100 iterations

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

1 10 19 28 37 46 55 64 73 82 91 100

KA PSO FHA SHA
Figure 5.13 Test 2 - Residual norm over 100 iterations

0

1

2

3

4

5

6

7

1 10 19 28 37 46 55 64 73 82 91 100

KA PSO FHA SHA
Figure 5.14 Test 3 - Residual norm over 100 iterations

0

1

2

3

4

5

6

7

1 10 19 28 37 46 55 64 73 82 91 100

KA PSO FHA SHA
Figure 5.15 Test 4 - Residual norm over 100 iterations

CONCLUSIONS AND FUTURE WORK
Particle Swarm Optimisation is a powerful technique which can be used

successfully to improve results of classical algorithms for image reconstruction. SHA
outperforms particle swarm optimisation and Kaczmarz algorithm by far, providing results
that are very close to the original images.

One future direction is the study of the influence that PSO parameters have on the
quality of the solution of SHA. More tests need to be done on real-world data and we will
try to develop other fitness functions that are more suitable for our problem, too. We will
also test other hybridisations of numerical and evolutionary algorithms for image
reconstruction.

BIBLIOGRAPHY

[1] Bjork A., �Numerical methods for least squares problems�, SIAM Philadelphia, 1996;
[2] Bjork A., Elfving T., �Accelerated projection methods for computing pseudoinverse
solutions of systems of linear equations�, BIT 19, 1979, pp. 145-163;
[3] Kaczmarz S., �Angenaherte Auflo-sung von Systemen linearer Gleichungen�, Bull.
Acad. Polonaise Sci. et Letters A, 1937, pp. 355-357;
[4] Popa C., �Iterative methods for lin-ear least-squares problems�, Mathematical
Monographs, 77, Western University of Timisoara, 2003;
[5] Popa C., �Least-squares solution of overdetermined inconsistent linear systems using
Kaczmarz�s relaxation�, Intern. J. Comp. Math., 55, 1995, pp. 79-89;
[6] Pyle L. D., �A generalised inverse å-algorithm for constructing intersection projection
matrices with application� , Numer. Math. 10, 1967, pp. 86-102;
[7] Tanabe K.,�Projection method for solving a singular system of linear equations and its
applications�, Numer. Math., 17, 1971, pp. 203-214;
[8] Kennedy J., Eberhart R., �Particle Swarm Optimisation�, Proceedings of IEEE
International Conference on Neural Networks, 1995, pp. 1942-1948.

